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I. INTRODUCTION 

One so lu t ion  t o  par t ic i -pat ion by man i n  long-term space explora t ion  i s  

c losure  of the food-waste loop by b io log ica l  means. I n  view of t h e  weight 

and pawer l imi t a t ions  a t r a n s i t i o n  from simple s torage  of commodities t o  

regenerat ion and reuse of metabolic wastes seems inevi tab le .  The character-  

i s t i c s  of a promising b io logica l  approach, u t i l i z i n g  t h e  autotrophic  

metabolism of hydrogen oxidizing bac te r i a  f o r  t h e  regenerat ive process w i l l  

be discussed. 

The ( chemosynthetic) bioregenerative system i s  a func t iona l  coupling 

of e l e c t r o l y s i s  of water with biosynthesis  by hydrogen b a c t e r i a  ( 1 7 2 )  

Figure 1 rapresents  a hypothet ical  flow diagram of chemosynthetically closed 

ecology; t he  reac t ions  involved i n  t h e  ove ra l l  process are summarized by 

t h e  chemical equations under the  diagram of f i g .  1. Elec t ro lys i s  of water 

produces oxygen for man and hydrogen f o r  t he  bac te r i a .  The carbon dioxide 

produced by man i s  assimilated by the  bac ter ia ,  which i n  t u r n  fu rn i sh  t h e  

proteins ,  fats, and carbohydrates required f o r  human n u t r i t i o n .  Thus a 

considerable por t ion  of man's metabolic wastes would be processed and r e -  

cycled i n  t h i s  ecosystem. 

The generation of hydrogen and oxygen by e l e c t r o l y s i s  i s  a r e l a t i v e l y  

e f f i c i e n t  process; information present ly  ava i lab le  ind ica t e s  an e f f i c i ency  

i n  t h e  order of 80% i n  t h e  conversion of e l e c t r i c a l  energy i n t o  b io log ica l  

energy (hydrogen and oxygen). 

degree, of power requirements for regenerative l i f e  support systems must 

involve a f a i r l y  rough approximation because of a rap id  technological  advance 

Any appra i sa l  of weight and, t o  a lesser 
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i n  t h e  e f f ic iency  of power generat ion and minia tur iza t ion  of instrumentat ion.  

It i s  therefore not possible ,  at t h e  present  time, t o  pred ic t  wi th  some 

degree of accuracy t h e  weight penal ty  Of an e l e c t r o l y t i c  system. 

a weight estimate of 20-40 pounds t o  support 3 men seems reasonable.  

However, 

An estimate of t h e  energy which would be required f o r  t h e  regenera t ion  

of man's carbon dioxide output are indicated by t h e  chemicalequations pre- 

sented i n  f i g .  1. Elec t ro ly t i c  cleavage of 6 moles of water would s u f f i c e  

t o  provide the  energy f o r  t he  conversion of one mole of carbon dioxide.  

Thus, the end r e s u l t  of e l e c t r o l y s i s  and biosynthesis  i s  t h e  formation of 

one mole (CH20) represent ing 120 kcal,  and one mole (or 22 l i t e r s )  of oxygen. 

The products of biosynthesis  provide thus,  t h e  approximate hourly c a l o r i c  

intake and oxygen requirement of one man. 

Because t h e  cleavage of 6 moles of water requi res  approximately 

600 kcals  energy input (75% e f f i c i ency) ,  the  ove ra l l  e f f i c i ency  of t h e  

energy conversion i s  of t h e  order of 20%. 

Measurements of autotrophic  growth r a t e s  i n  batch and i n  continuous 

cu l tu re s  ind ica te  t h a t  s p e c i f i c  r a t e s  of CO conversion of approximately 

1 l i t e r  can be a t t a ined .  A suspension volume requirement i n  the  order  of 

2 

20-30 l i t e r s  per man seems thus  a reasonable es t imate .  

On the  basis of t h e  performance r ecen t ly  obtained with growth i n  

s teady-state  cu l tures ,  it appears t h a t  t h i s  approach t o  l i f e  support i s  we l l  

on i t s  way t o  maturity.  Therefore, t h i s  r epor t  w i l l  review the  present  

s t a t e  of the  a r t  and discuss  i n  some d e t a i l :  t h e  techniques employed f o r  

cu l t iva t ion ,  t h e  demand upon and t h e  response of t h i s  organism t o  i t s  chemical 

and physical environment, as w e l l  as some of t h e  bas i c  aspects  of  t h e  conver- 
* 

s i o n  process. 

* 
Details w i l l  be published elsewhere. 
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11. CULTIVATION PROCEDURES 

1. Batch Operation. 

Abundant evidence ind ica t e s  t h a t  H2, 0 and CO are consumed by 2 \  2 

hydrogenomonads i n  a r a t i o  of 6:2:1. 

of 70% hydrogen, 20% oxygen and approximately 10% C02. 

most convenient fo r  use when growth i s  obtained by the  "passive" gas 

d i f fus ion ,  a method described by R e p a ~ k e ' ~ ) .  

and i s  a s a t i s f a c t o r y  

This corresponds t o  a gas composition 

This gas mixture i s  

It permits s ter i le  operat ion 

method for most experiments. 

Briefly,  t h e  system cons is t s  of a gyrotory water-bath-shaker (New 

Brunswick Model ~76) with a capacity f o r  s i x  500 m l  Eklenmeyer cu l tu re  

f l a s k s .  The cu l tu re  flasks a re  connected t o  a manifold, which i n  t u r n  i s  

connected e i t h e r  t o  a water a sp i r a to r  o r  t o  a r e se rvo i r  containing the  gas 

mixture. The pressure of t h e  gas r e se rvo i r  i s  maintained constant v i a  a 

water bridge connected t o  a water r e se rvo i r  which i s  open t o  t h e  atmosphere. 

The r a t e  of c e l l  reproduction i n  t h i s  system is  l imi ted  by t h e  d i f fus ion  

rate of oxygen i n t o  t h e  suspension. The m a x i m u m  rate of oxygen d i f fus ion  

can be determined manometrically, u t i l i z i n g  s u l f i t e  (0.2N) dissolved i n  t he  

medium u t i l i z e d  f o r  cu l t i va t ion .  Measurements i nd ica t e  an oxygen t r a n s f e r  

r a t e  of approximately 100 m l  per hour with ba f f l ed  f l a s k s  (condi t ions:  

1 a t m .  30 C, 0.2N s u l f i t e  i n  120 ml cu l tu re  medium). The r a t e  of oxygen 

t r a n s f e r  i s  5 t o  10 fo ld  lower i n  an unbaffled f l a s k .  The r a t e  of hydrogen 

d i f fus ion  i s  assumed t o  be three t i m e s  t h e  rate of oxygen d i f fus ion ,  under 

s i m i l a r  conditions.  

air, 
0 

The maximum r a t e  of gas consumption and growth can thus,  for a given 

s e t  of conditions,  be estimated. If one assumes a gas mixture containing a 
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hydrogen concentration t h r e e  t imes t h a t  O f  oxygen, and a hydrogen t o  oxygen 

consumption r a t i o  of t h r e e  t o  one, it i s  evident  t h a t  with a progressively 

increasing r a t e  of gas consumption, oxygen d i f fus ion  w i l l  u l t ima te ly  become 

the  growth l imi t ing  f a c t o r .  

A disadvantage of t h i s  method is  t h a t  r e l a t i v e l y  l a rge  q u a n t i t i e s  of 

t h e  explosive gas mixture must be ava i l ab le  t o  s u s t a i n  a suspension over 

n ight .  

range 4-5 cm Hg) and an oxygen electrode-arnplifier,  we a r e  ab le  t o  mix t h e  

gasses autar!atically.  Oxygen (100%) i s  fed v i a  solenoid valve, actuated by 

the  oxygen cont ro l le r ,  i n t o  a gas-mixing chamber (approximately 2 l i t e r s )  

containing The oxygen sensor.  

same mixing chamber t h e  f l o d  being regulated by a solenoid valve actuated 

by t h e  pressure switch connected t o  t h e  mixing chamber. A s m a l l  pump 

(Dyna Pmp Model 4K) c i r c u l a t e s  t he  gas mixture t o  t h e  c d t u r e s  and back t o  

t h e  mixing chamber. 

By using a simple pressure actuated switch ( a c t i v a t i n g  pressure 

A mixture of 86% H2 + 14% C02 i s  fed t o  t h e  

Tne sane design w a s  used t o  provide l a rge  batches (volumes of 10-12 

The gas mixture w a s  c i r cu la t ed  through l i t e r s )  05 c z l l s  with gas mixture. 

t h e  susper i s l r  by two pumps v i a  fou r  gas d ispers ion  tubes ( f r i t t e d  cy l inders )  

mounted near t h e  bottom of t h e  suspension container .  

returned t o  the  mixing chamber v i a  an o u t l e t  f i t t e d  i n t o  t h e  t o p  of t h e  

container.  B e s t  r e s u l t s  were obtained with t h e  oxygen e lec t rode  mounted i n  

t h e  suspension instead of i n  t h e  mixing chamber. This procedure allows f o r  

an automatic adjustment of oxygen t r a n s f e r  (by increas ing  t h e  gas phase 

Oxygen concentration) proport ional  t o  t h e  rate Of oxygen consumption by t h e  

suspension. This system permits c u l t i v a t i o n  of r e l a t i v e l y  l a rge  volumes of 

The gas mixture w a s  
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suspension of medium population density.  Routinely, a dry weight production 

of approximately 20 grams was obtained i n  24 hours wi th  heavy inoculum. 

2.  Continuous Operat ion.  

To achieve continu0;ls cu l ture  seve ra l  s teady-s ta te  parameters such as 

pH, concentration of nut r ien ts ,  oxygen, hydrogen and carbon dioxide must be 

continuously balanced. These parameters a re  subject  t o  considerable change 

i n  batch cu l tures .  A s teady-state  cu l tu re  i n  which t h e  r a t e  of growth i s  

cont ro l led  by a s ing le  f a c t o r  (e .g .  t h e  carbon source) i s  defined as a 

chemostat; i n  such cul tures ,  t h e  concentration of nu t r i en t s  o ther  t han  t h e  

l i m i t i n g  ones, t he  concentration of products excreted i n t o  t h e  medium i n  

t h e  course of c e l l  reproduction and t h e  pH a r e  more or l e s s  independent of 

d i l u t i o n  r a t e .  

developed by the  t h e o r e t i c a l  work of & ~ o n o d ( ~ ) ,  Novick and S ~ i l a r d ' ~ )  and 

The background of t h i s  type of cu l tu re  has been w e l l  

t he  experimental approach of Herbert e t  a1 (6) . 

A continuous cu l ture  i n  which t h e  d i l u t i o n  rate i s  s e t  by t h e  growth 

r a t e  i s  ca l led  a tu rb idos t a t  or product-limited cu l ture .  I n  order  t o  allow 

t h e  most e f f i c i e n t  u t i l i z a t i o n  of both power and weight a system of t h i s  

type i s  required, i n  which t h e  growth of the  c e l l  is  e n t i r e l y  cont ro l led  by 

i t s  i n t e r n a l  cha rac t e r i s t i c s ,  r a the r  t han  by an environmental f a c t o r  (as 

would be i n  t h e  case of a chemostat). 

L i t t l e  t h e o r e t i c a l  background on t u r b i d o s t a t s  has ye t  been accumulated, 

bu t  c l e a r l y  t h e  chemical and physical environments are influenced by t h e  

d i l u t i o n  rate. 

t r a t i o n  of t h e  e s s e n t i a l  cons t i tuents  of t h e  feed medium f o r  each c e l l  

dens i ty  at which the  cu l ture  is operated. O n  progress i n  e s t ab l i sh ing  and 

It i s  therefore  necessary t o  determine t h e  optimal concen- 
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maintaining these  optimal concentrations i s  discussed i n  Sec t ion  111, 3 

and Section V. 

Our t u r b i d o s t a t i c a l l y  cont ro l led  apparatus i s  an  adapta t ion  of a u n i t  

fabr ica ted  by B a t t e l l e  Memorial I n s t i t u t e ( 7 ) .  

conforms t o  a design described by F i n J 8 ) .  

closed chamber (3-4 l i t e r s  of working suspension i n  t o t a l  volume of 5 l i t e r s )  

provided with a b a f f l e  and impeller arrangement. Rapid gas t r a n s f e r  i s  

accomplished by vigorous a g i t a t i o n  and r e c i r c u l a t i o n  of t h e  gas phase 

through the liqu-id phase. 

and a dens i ty  con t ro l  system ( s e e  f i g .  4 ) .  

b r i e f l y  described. 

The conf igura t ion  ( s e e  f i g .  2) 

Cu l t iva t ion  takes  place i n  a 

Recent addi t ions  include a compact pH ( s e e  f i g .  3) 

The c o n t r o l  systems used w i l l  be 

I n  an e a r l i e r  arrangement ( s e e  f i g .  2 )  t h e  i n f l u x  of CO t o  t h e  sus- 2 

pension was controlled by a CO 

suspension. When t h e  dissolved CO concentration dropped below a p rese t  

l eve l ,  t h e  sensor actuated solenoid valve ( S k ) ,  thus  admitt ing a carbon 

dioxide - hydrogen mixture (86%/14%) t o  t h e  r eac t ion  chamber v i a  a pre-cal-  

ibrated meter valve. 

elapsed time meter (C2). 

used t o  o f f se t  t h e  slow response of t h e  CO sensor.  A s  w i l l  be discussed 

l a t e r ,  t h i s  method of carbon dioxide con t ro l  w a s  inadequate at higher pop- 

u l a t i o n  dens i t i e s .  Presently, a gas phase carbon dioxide - c o n t r o l l e r  i s  i n  

use and has r e su l t ed  i n  improved system performance. 

e lec t rode  (converted pH electrode, Beckman) i n  t h e  2 

2 

The t o t a l  H / C O  flow w a s  monitored by a d i g i t a l  2 2  

A gas mixture of hydrogen and carbon dioxide w a s  

2 

Oxygen supply i s  cont ro l led  by a dissolved-oxygen sensor (go ld - s i lve r  

Clark-type e lec t rode)  and measured i n  a similar fash ion  as described above. 

This sensor has a Cast response and has performed s a t i s f a c t o r i l y  i n  t h e  l i q u i d  

phase. 
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The pressure i s  maintained at 3 ps ig  with hydrogen. The hydrogen 

i n f l u x  is  cont ro l led  by pressure switch - solenoid valve arrangement and 

metered i n  a s i m i l a r  f ash ion  as the  oxygen and carbon dioxide consumption. 

The pH of t h e  suspension could be cont ro l led  by the  pH sensor, mounted 

i n  an ex te rna l  sampling loop ( see  f ig .  2 ) .  

chamber i s  shown i n  f i g .  3.  The combined pH e lec t rode  was inse r t ed  through 

t h e  t o p  of t h e  l u c i t e  block. A t i g h t  s e a l  w a s  provided wi th  a rubber "0" 

r i n g  and nut arrangement. This arrangement permitted easy removal of t h e  

pH e lec t rode  f o r  t h e  purpose of cleaning and t e s t i n g .  

w a s  connected t o  a recorder -cont ro l le r  which permits automatic add i t ion  O f  

e i t h e r  acid or base. Presently, t h i s  equipment i s  used only as a pH 

ind ica to r .  

A cut-away diagram of t h e  pH 

The pH e l ec t rode  

The dens i ty  of  t h e  suspension i s  cont ro l led  by t h e  flo-d-through 

chamber mounted i n  t h e  ex te rna l  sampling loop ( s e e  f i g .  4 ) .  

s t e e l  sample chamber used interchangeable t e f l o n  gaske ts  f o r  monitoring 

various c e l l  d e n s i t i e s .  Not shown is  t h e  reference chamber, attached t o  

t h e  sampling chamber. A needle i n  t h e  l i g h t  pa th  of t h e  re ference  chamber 

could be used t o  balance t h e  l i g h t  i n t e n s i t i e s  t ransmi t ted  t o  t h e  two photo- 

cells. 

bridge (assoc ia ted  c i r c u i t r y  i n  f i g .  4A). Opt ica l  dens i ty  of t h e  suspension 

w a s  checked pe r iod ica l ly  against  a ca l ib ra t ed  instrument. It w a s  found t h a t  

t h e  population dens i ty  remained constant (w i th in  a few percent) during periods 

of constant meter s e t t i n g .  

c e l l  build-up occurs on t h e  w a l l s  of t h e  con t ro l  chamber. Figure 5 i l l u s -  

trates t h a t  t h e  r a t i o  of o p t i c a l  density over dry weight of c e l l s  i s  

The s t a i n l e s s  

I n  addition, an e l e c t r i c  balance w a s  provided i n  t h e  wheatstone 

One can the re fo re  assume t h a t  e s s e n t i a l l y  no 
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e s s e n t i a l l y  constant throughout t he  t e s t  run, i nd ica t ing  t h a t  con t ro l  of 

o p t i c a l  density i s  an adequate means f o r  con t ro l l i ng  t h e  c e l l  concentrat ion 

of suspens ion. 

The c e l l  dens i ty  of t h e  r eac to r  i s  maintained through automatic 

addi t ions of f r e s h  medium. The excess suspension leaves t h e  r eac to r  v i a  a 

stand pipe, a gas- l iquid separa tor  and l e v e l  c o n t r o l l e r .  The l e v e l - c o n t r o l l e r  

i s  connected t o  a harvest  meter v i a  a solenoid valve (S-6 f i g .  2 )  which i s  

actuated by  t h e  l e v e l  con t ro l l e r .  The harvest  i s  measured and t h e  output 

monitored by a d i g i t a l  counter ( C 4 ) .  The d i g i t a l i z e d  outputs  of gas con- 

sumption and harvest  a r e  r eg i s t e red  by a camera, set t o  t ake  a frame at pre- 

se lec ted  time i n t e r v a l s .  

Production r a t e s  of 50 t o  90 grams (D.W.) per 24 hours were obtained 

with a working suspension of 3 l i t e r s  at  a population dens i ty  of 5 t o  6 

grams ( D . W . )  per l i t e r .  

of 5 (day-') o r  0 .2  ( h r - l )  . 
The bes t  r a t e s  observed thus  far  ind ica t e  K-values 

111. THE CHEMICAL AND PHYSICAL ENVIRONMENT 

1. Temperature 

The maximum r a t e  of c e l l  reproduction (growth) occurred(') at 34' t o  

0 35OC. 

time but  growth w a s  negl ig ib le .  

one-fourth t h e  r a t e  observed at 35 C. 

A t  40 C an enhanced r a t e  of gas consumption w a s  observed f o r  a shor t  

At 2OoC t h e  rate of growth w a s  approximately 

0 

0 0 Within a temperature range of 25 t o  35 C conversion e f f i c i ency  w a s  

e s s e n t i a l l y  constant (Table 1); Qlo- values for growth w e r e  of t h e  order  of 

1 . 5  t o  2.0.  
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TABLE 1 

Effect of Temperature on Conversion 

Temperature ( O C )  

35 

25 

* 
ET f ic iency  

02/ co2 

2.4 - + 0 . 1  

2.8 - + 0.2 

* 
Conversion e f f i c i ency  i s  expressed as t h e  number of oxygens u t i l i z e d  ( i n  

t h e  combustion of hydrogen) f o r  the conversion of each carbon dioxide. 

2 .  pH Effec ts .  

A neu t r a l  pH produced t h e  optimal growth r a t e .  

3. Inorganic Nut r i t ion .  

The n u t r i t i o n a l  requirements f o r  Hydrogenomonas eutropha were 

Bartha (lo) found a requirement f o r  N i  and described by Repaske") . 
m e r h a r d t  observed stirnillation of hydrogenase a c t i v i t y  by Mn and Co. 

A s impl i f ied  medium w a s  described by Bongers(12). 

w i th  H. eutropha and H-20 i n  media containing e i t h e r  urea  or ammonia n i t rogen  

i n  t h e  presence of Mg, P, and ferrous i ron .  Contaminants i n  t h e  major salts 

made supplementation wi th  t r a c e  elements unnecessary. 

inorganic n u t r i t i o n  f o r  ba tch  cu l tures  i s  summarized i n  Table 2.  

He found rap id  growth 

- -  - 

This information on 

I n  t h e  tu rb idos t a t  t h e  s teady-s ta te  nu t r i en t  concentrations,  c e l l  

mu l t ip l i ca t ion  r a t e  and a l l  o ther  proper t ies  of t h e  c e l l  suspension must be 

kept at a constant l e v e l .  TO maintain t h e  optimal s teady-s ta te  nu t r i en t  
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TABLE 2 

- GROWTH REQUIREMENTS OF HYDROGENOMONAS EUTROPHA AND H-20 

Temperature 

Hydrogen 

Oxygen 

Carbon dioxide  

co( m2 12 

&SO4. 7H20 

Fe (M4l2 (s04)2.6H20 

Phosphate ( N a ,  K)  

PH 

33c - 35c 

50-560 mm 

120-150 

70-80 mm 

0 .5  g / l i t e r  

0.1 g / l i t e r  

0.008 g / l i t e r  

0.03M 

6.5-7.5 
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concentrations,  t h e  concentration of t h e  n u t r i e n t s  i n  t h e  feed medium must 

be higher than  Lnose i n  t h e  suspznding mediurn, s ince  t h e  inflowing medium 

i s  d i lu t ed  by t h e  suspending medium t o  an ex ten t  which is  a func t ion  of t h e  

consumption of t h e  medium cons t i tuents  by t h e  c e l l s .  

f o r  n i t rogen  i s  i l l u s t r a t e d  i n  t h e  following equation: 

The t o t a l  m a s s  balance 

N = N s + N  
m P 

where N i s  t h e  nitrogen concentration of t h e  feed medium, N t h e  concen- 

t r a t i o n  of t h e  subs t r a t e  n i t rogen  and, N t h e  concentration of t h e  p r o t e i n  

( expressed as nitrogen) i n  t h e  suspension. 

of t h e  feed medium depends upon the  p ro te in  concentration of t h e  suspension 

(which determines t h e  nitrogen consumption r a t e )  and upon t h e  l e v e l  of 

s u b s t r a t e  nitrogen maintained. With suspensions of r e l a t i v e l y  low popu- 

l a t i o n  density (low p ro te in  concentration) and wi th  a r e l a t i v e l y  low 

s u b s t r a t e  nitrogen concentration, the  n i t rogen  concentration i n  t h e  feed 

medium can be r e l a t i v e l y  low. 

concentration) a r e l a t i v e l y  high nitrogen feed rate is  necessary. 

mismatched n i t rogen  feeding rate, and consequently, a t r a n s i t i o n  t o  a new 

s teady-s ta te  occurs i f  t h e  a c t u a l  nitrogen consumption rate devia tes  from 

t h e  expected value.  Deviations i n  t h e  n i t rogen  consumption r a t e  may occur 

i f  t h e  pop:ilation c h a r a c t e r i s t i c s  of suspension change wi th  time; example 

given, i f  t h e  r a t i o  of ac t ive  metabolizing c e l l s  (working suspension) over 

r e s t i n g  c e l l s  ( i n a c t i v e  population) change i n  t h e  course of an experiment. 

The v a l i d i t y  of t h i s  formulation f o r  N feed rate w a s  t e s t e d  f o r  d i f f e r e n t  

l e v e l s  of c e l l  concentrations and the r e s u l t s  w i l l  be discussed l a t e r .  

m S 

P 
Thus, t h e  nitrogen concentration 

W i t h  a high c e l l  dens i ty  (h igh  p ro te in  

A 



-12- 

A problem assoc ia ted  with n i t rogen  i s  t h e  extremely r ap id  decomposition 

of urea, t h e  primary nitrogen source i n  a closed environment. According t o  

K8nig(13) a rap id  conversion of urea  i n t o  ammonia and carbon dioxide i s  t o  

be expected i n  a suspension cu l t i va t ed  i n  t h e  presence of r e l a t i v e l y  low 

concentrations of ammonia. Apparently under these  conditions t h e  formation 

of c e l l s  with a high urease a c t i v i t y  r e s u l t  ( s e e  f i g .  6 ) .  

t hese  observations. 

We confirmed 

It would thus  appear t h a t  t h e  presence of a given concentration of 

ammonia i n  a suspending medium nay be necessary t o  prevent t h e  buildup of 

r e l a t i v e l y  high urease a c t i v i t y .  We were, however, unable t o  de t ec t  any 

urea i n  rap id ly  growing s teady-s ta te  cu l tu re s  i n  which a constant l e v e l  of 

ammonia nitrogen w a s  maintained and urea  n i t rogen  cons t i t u t ed  t h e  main 

n i t rogen  source. Apparently, a l s o  i n  t h e  presence of amon ia  a rap id  urea 

decomposition ozcurs. 

A r a t iona le  similar t o  t h a t  f o r  n i t rogen  app l i e s  t o  o the r  elements 

(such as P, Mg, Fe and t r a c e  elements) requi red  f o r  c e l l  reproduction. 

However, s ince  these  elements a r e  t o l e r a t e d  a t  r e l a t i v e l y  high concentrations 

and because t h e i r  u t i l i z a t i o n  i s  l imi ted ,  one would presume t h a t  a s u b s t r a t e  

concentration approaching t h e  concentration of t h e  feed medium would lead t o  

a s teady-s ta te  concentration conducive t o  r ap id  c e l l  reproduction. 

While t h e  requirements f o r  N, P, and Mg f o r  s teady-s ta te  c u l t u r e s  (up  

t o  5-6 grams (D.W.)  of c e l l s  per  l i t e r )  are resolved, those  f o r  t r a c e  elements 

s t i l l  present a problem. W e  have found a s i g n i f i c a n t  i nc rease  i n  t h e  rate of 

c e l l  production by add i t ion  of t a p  water t o  a medium which contained a l l  t r a c e  

elements known t o  be necessary. No  such e f f e c t  w a s  observed wi th  ba tch  

cu l tu re s .  

progress . 
A study concerning t h e  t r a c e  element requirement i s  p resen t ly  i n  



4. Gas Supply. 

With regards t o  the  gaseous substrate,  which provides t h e  suspension 

wi th  energy and carbon dioxide, it was found t h a t  t h e  hydrogen concentration 

could be varied widely (40 mm - 600 mm) wi th  l i t t l e  e f f e c t  upon y ie ld .  

t h e  o ther  hand, t h e  r egu la t ion  of carbon dioxide and oxygen proved more 

c r i t i c a l .  

t r a t i o n s  i n  excess of t h i s  value growth w a s  progressively impeded. 

On 

Carbon dioxide pressures up t o  90 mm were to l e ra t ed ;  wi th  concen- 

Tne oxygen p a r t i a l  pressure of t h e  growing suspension had a r e l a t i v e l y  

s t rong  e f f e c t  on t h e  r a t e  of growth, t h e  e f f i c i ency  of energy conversion and 

t h e  metabolic a c t i v i t y  with regard t o  product formation. 

A t  r e l a t i v e l y  low oxygen concentrations (35 mm - 60 mm), t h e  r a t e  of 

carbon dioxide conversion w a s  up t o  50% higher than w a s  observed with 150 mm 

oxygen. However, t h i s  r e l a t i v e l y  high conversion r a t e  w a s  not s t a b l e .  Upon 

prolonged incubation under these conditions, t he  rate of carbon dioxide 

f i x a t i o n  declined and formation of i n t r a c e l l u l a r  l i p i d  inc lus ions  occurred. 

Sibsequently, t h e  r a t e  of c e l l  d iv is ion  diminished. 

A t  r e l a t i v e l y  high oxygen concentrations (110 mm - 160 mm) no l i p i d  

inc lus ions  were formed, and t h e  r a t e s  of c e l l  d iv i s ion  and carbon dioxide 

f i x a t i o n  remained constant ( f i g .  7). 

were somewhat less than  t h e  values observed with lod oxygen concentrations 

( s e e  Table 3 ) .  

The e f f i c i e n c i e s  of energy conversion 
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TABLE 3 

Oxygen supply and energy conversion. G a s  phase: 70% H2, 10% C02 
0 

and 0 as ind i  <ated. Urea medium; temperature 35 C. 2 

02i co2 1.9 _+ 0.2 2.1 - + 0.1 2.9 _+ 0.2 3.0 3 0 . 2  

5 .  Material Balance i n  a Closed Environment. 

I n  t he  aSove d iscuss ion  t h e  assumption i s  made  t h a t  carbon dioxide 

w a s  t h e  only component of t he  closed environment which had t o  be d e a l t  wi th  

and t h a t  t h e  o ther  ingredien ts  necessary f o r  c e l l  synthes is  would be a v a i l -  

able i n  t h e  proper r a t i o  t o  carbon dioxide.  This assumption i s  more or less 

cor rec t ,  with the  exception of urea. 

required t o  provide optimal condi t ions f o r  t h e  biosynthesis ,  while  t h e  ratio 

a t  which carbon dioxide and urea are supplied approaches 4/.25 i f  metabolic 

wastes are t h e  so l e  cont r ibu tors .  

can thus not be expected, i . e .  optimal condi t ions f o r  t h e  conversion of a l l  

carbon dioxide on hand cannot be maintained. Conditions must t he re fo re  be 

applied t o  t h e  b a c t e r i a l  suspension which lead  t o  the production of a c e l l  

mass which i s  r e l a t i v e l y  poor i n  protein-ni t rogen.  Nitrogen s t a r v a t i o n  

a l ters  the d i s t r i b u t i o n  of products of carbon dioxide f i x a t i o n  and changes 

c e l l  cha rac t e r i s t i c s  i n  a r a t h e r  similar fash ion  as those observed if 

suspensions are incubated at r e l a t i v e l y  low oxygen concentrations.  It i s  

A C/N r a t i o  of approximately 4,'1 i s  

A material balance wi th  regard t o  ni t rogen 
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obvious t h a t  t h i s  behavior i s  not compatible wi th  c u l t i v a t i o n  under steady- 

state conditions.  I n  order t o  cope wi th  t h i s  problem, cu l tu re s  s tag ing  i s  

proposed. This technique would involve c u l t i v a t i o n  i n  two phases , occurring 

i n  two separa te  chambers: one culture chamber containing a l l  ava i l ab le  

nitrogen, while i n  a second chamber growth would occur i n  t h e  absence of 

s u b s t r a t e  nitrogen. No information on t h e  adequacy of t h i s  approach i s  

p resen t ly  ava i lab le .  It i s  expected, however, t h a t  t h i s  technique w i l l  

produce t h e  bes t  nitrogen economy i n  a closed environment, but preliminary 

inves t iga t ions  concerning the  s u i t a b i l i t y  of nitrogen-starved mater ia l  as a 

food source a r e  not encouraging. 

IV ENERGLTICS 

1. Efficiency of ATP Formation 

Hydrogen i s  u t i l i z e d  by hydrogen b a c t e r i a  for reductive and energy 

y i e ld ing  purposes. Hydrogenase, an  enzyme which mediates t h e  u t i l i z a t i o n  

of hydrogen, ca ta lyzes  t h e  reduction of a ye t  un iden t i f i ed  primary acceptor 

which subsequently t r a n s f e r s  e lec t rons  t o  oxygen v i a  mediators such as 

pyr id ine  nucleotide,  f l a v i n s  and cytochromes. I n  t h i s  process, t h e  two 

r eac t an t s  e s s e n t i a l  f o r  CO ass imi la t ion  a r e  generated: reduced pyridine 

nucleotide (NADH ) and adenosine tr iphosphate (ATP). 

2 

2 

The hydrogenase-mediated generation of NADH has been demonstrated 2 
i n  hydrogenomonads (14’ 15) and o the r  hydrogenase containing b a c t e r i a  (16) . 

However, r e l a t i v e l y  l i t t l e  is known about t h e  e l e c t r o n  t r anspor t  sequence 

a t  t h e  reducing s i t e  of t h e  r e sp i r a to ry  chain. Repaske (15’ assumes a requi re -  

ment f o r  FMN as a cofac tor  i n  t h e  reduction of NAD, and has evidence t h a t  

another coupling f a c t o r  between hydrogenase and NAD may be opera t ive  (17) . 
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This l a t t e r  coupling f a c t o r  i s  presumed t o  have a similar func t ion  as 

fe r r idoxin  i n  anaerobic microorganisms and i n  green p l a n t s .  

Oxidation of NADH proceeds a t  t o o  Slow a r a t e  t o  accomodate t h e  

r e l a t i v e l y  high r a t e s  of hydrogen oxida t ion  usua l ly  observed. The pathways 

and t h e  cofactors involved i n  t h e  oxida t ion  of NADH are not we l l  defined. 

The formation of ATP by c e l l - f r e e  prepara t ions  of hydrogenomonads 

grown alrtotrophically w a s  studied i n  some detail(18).  

summarized i n  Table 4. 

The r e s u l t s  are 

Oxidative and phosphorylative a c t i v i t i e s  were always considerably 

higher with hydrogen than  with o ther  e l e c t r o n  donors (Table 4 ) .  

values with hydrogen varied somewhat, bu t  were never i n  excess of 0 .8 .  

Phosphorylation associated wi th  hydrogen oxidation w a s  unaffected by antimycin 

A and terminal oxidase i n h i b i t o r s  (CN-, CO, N j ) .  

P/O 

With succinate as a subs t r a t e  ins tead  of hydrogen, t h e  r a t e s  of 

oxidative and phosphorylative a c t i v i t i e s  were some 5-fold lower and t h e  

P/O values were equal or somewhat l e s s .  

s e n s i t i v e  t o  antimycin A .  

This phosphorylation w a s  comparatively 

W i t h  both subs t r a t e s  present ( H  succ ina te) ,  t h e  r a t e  of phosphorylation 2’ 

w a s  equal t o  t h e  sum of t h e  rates found with each s u b s t r a t e  separa te ly .  

An equivalent increase  i n  0 uptake w a s  a l s o  observed. 2 

The simplest i n t e r p r e t a t i o n  of t h e  observed phenomena i s  t h a t  

phosphorylation i s  occurring independently a t  two d i f f e r e n t  s i t e s  i n  t h e  

r e sp i r a to ry  chain. The p o t e n t i a l  range f o r  phosphorylation apparently i s  

between hydrogen and cytochrome - b when hydrogen i s  t h e  subs t r a t e ,  and between 

cytochrome - b and oxygen when succ ina te  i s  t h e  subs t r a t e .  

l a t i n g  a c t i v i t y  with succinate alone as s u b s t r a t e  involves one or two phos- 

phorylating s i t e s  i s  unknown. 

Whether phosphory- 



TABLE 4 

The Effect of Various Subs t ra tes  and - I n h i b i t o r s  on Phosphorylation 

SJb st rat e 

H2 

S ~ c c  i nat e 

H -k Succinate 

p-OH-Butyrate 

2 

mH2 

H2 

S x c i n a t e  

i n h i b i t o r  A p o l e s  Pi 

h r  

6.47 

1.23 

7-51 

0.38 

0.11 

N- 3 
20% co 
2.5 y Antimycin 1 

10  antimycin A 

~ 

38 

100 

93 

97 

97 

A patom 0 

hr 

12.4 

6.8 

16.9 

1.1 

3.4 

% of Control a >  

37 

98 

100 

95 

62 

% of Control b )  
1 1 

84 

69 

2.5 y Antimycin 

5 y Antimycin 

47 

0 

52 

.18 

.44 

* 35 

.02 

.48 

.45 

* 49 

.45 

* 30 

.19 

0 

a )  

b )  

Values i n  absence of i n h i b i t o r s  were 9.2 patoms of oxygen and 4.26 p o l e s  of P . 
Values i n  absence of i n h i b i t o r s  were 4.65 patoms of oxygen and 1.56 pmoles of P . 

i 

i 
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Our r e s u l t s  suggest an oxidat ion O f  reduced cytochrome - b by oxygen. 

This could be demonstrated spectrophotometrically ( s e e  f i g .  8) ;  d i s t i n c t  

absorption by cytochrome - b obtained from a c e l l - f r e e  prepara t ion  incubated 

with hydrogen, rap id ly  disappeared upon in t roduct ion  of 0 

cyanide concentrations s u f f i c i e n t  t o  prevent oxidat ion of cytochrome - e .  

Whether t h i s  r eac t ion  between oxygen and cytochrome - b occurs t o  t h e  same 

extent  i n  t h e  absence of CN- i s  unclear .  

r e l a t i v e l y  l o w  P/O r a t i o s  observed with succinate  and from t h e  i n a b i l i t y  of 

antimycin A t o  s i g n i f i c a n t l y  i n h i b i t  oxidat ive a c t i v i t y  with t h i s  s u b s t r a t e  

one would assume t h a t  even i n  t h e  absence of CN- some autooxidation occurs 

a t  t h e  cytochrome - b l e v e l .  A s  w i l l  be discussed l a t e r ,  spectroscopic 

observations on c e l l  suspensions subs t an t i a t e  t h i s  assumption. 

i n  the  presence of 2 

Hovever, judging from t h e  

2 .  Efficiency of CO Conversion. 2 

Hydrogen bac te r i a  grow by a combination of energy-yielding (eq.  2 )  

and energy-consuming (eq.  1) processes, summarized i n  t h e  following 

equations : 

2H2 3- C02 --f (CH20) -t- H20 

4~~ + 202 -+ 4 ~ ~ 0  ( +  ~ T P )  ( 2 )  

(1) 

The ef f ic iency  of C02 conversion can be expressed as an 0 2 2  / C O  quot ient :  

t h e  molal r a t i o  of molecules of oxygen u t i l i z e d  (eq.  2 )  f o r  t h e  conversion 

of one molecule of C02. Observed quot ien ts  are usua l ly  of t h e  order  of 2. 

If ATP generation i n  i n t a c t  c e l l s  i s  as e f f i c i e n t  as t h a t  observed i n  mito- 

chondrial  systems, then  approximately 12 moles of ATP should be made a v a i l -  

able i n  t h e  combustion r eac t ion  (eq .  2 ) ,  and u t i l i z e d  i n  t h e  energy-consuming 
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processes (eq.  1). 

required f o r  an e f f i c i e n t  system. However, s ince  our experiments on c e l l -  

f r e e  preparat ions suggested t h a t  cytochrome - b has a high a f f i n i t y  for oxygen, 

one would assume t h a t  an "abbreviated" r e sp i r a to ry  chain might be operat ive 

i n  t h e  i n t a c t  c e l l .  The e f f e c t  of a number of terminal  oxidase i n h i b i t o r s  

on t h e  eff ic iency of C02-conversionwas tested i n  order t o  evaluate  t h e  

s ign i f i cance  of t h e  au tooxid izabi l i ty  of cytochrome - b. 

Such an energy expenditure would be twice t h e  amount 

The e luc ida t ion  of t h e  a c t u a l  mechanism cons t i t u t e s  not only an a rea  

of much i n t e r e s t ,  but has a l s o  i t s  p r a c t i c a l  implicat ions.  If, e.g.  3 ATP 

ins tead  of 1 ATP could be generated f o r  each oxygen atom u t i l i z e d ,  t he  r a t e  

of e l e c t r o l y s i s  required f o r  waste regenerat ion could be considerably lower 

than  present ly  an t ic ipa ted .  This study w a s  undertaken t o  obta in  evidence on 

t h i s  po in t .  

0 The experiments were conducted at 30 C i n  a regular  growth medium and 

an atmosphere of H 0 and C02. The number of i nh ib i to r s  which can be used 

wi th  i n t a c t  c e l l s  i s  l i m i t e d ;  only S i t e  I11 (between cytochrome c and 0 ) 

can e f f e c t i v e l y  be inh ib i ted  by cyanide, azide or carbon monoxide. No 

ef fec t ive  inh ib i to r s  a r e  known which block t h e  e l ec t ron  t r a n s f e r  at s i t e  I1 

(between cytochrome - b and cytochrome c) i n  i n t a c t  c e l l s .  

cytochrome - c i s  not autooxidizable (for spectroscopic evidence see f i g .  8 

and f i g .  g ) ,  it i s  unl ike ly  t h a t  i n t h e  presence of terminal  oxidase i n h i b i t o r s  

S i t e  I1 w i l l  contr ibute  subs t an t i a l ly  i n  o v e r a l l  ATP generation. 

2? 2 

2 - 

However, s ince  
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TABLE 5 
THE EFFECTS OF INHIBITORS ON CONVERSION EFFICIENCY* 

Se r i e s  Incubation Condition of Incubat i o n  CO, F ixa t ion  0, Consumption Eff ic ienc)  

(min. ) Gas phase (%) I n h i b i t  or ( p o l e s / h r )  ( p o l e s / h r )  02/ co2 
H2 O 2  co2 N2 

80 60 15 5 20 Control 32 63 1 -95  

80 60 15 5 20% co 17 
I 

90 60 15 5 20 Control 41 

43 2.50 

95 2.30 

90 60 15 5 20% co 22 45 2.05 

0 70 20 i o  Control 3.8 8 .O 2 . 1  

10 70 20 i o  NaN 4.3 8 .7  2.0 3 

3 

I1 
35 70 20 i o  NaN 3.7 8.8 2.4 

60 70 20 i o  Control 4.3 8 .2  1.9 

CO Fixat i o n  Counts/ p1 2 Se r i e s  Incubation Conditions of Incubation G a s  Uptake 

(min. ) Gas phase (%) I n h i b i t  o r  ( @/flask) ( CPM) 

10 

10 

10 

10 

10 

IIi 14 

14 

10 

10 

H2 32 N2 

55 5 40 

55 5 

80 20 

80 20 

80 20 

80 20 

80 23 

80 20 

80 20 

Cont r ol 

40% CO 

Co nt r ol 

3 

3 

NaN 

N a N  

Control 

CN- 

Control 

54,000 

23,400 

16,100 

15,700 

9,700 

23,000 

9,900 

16,400 

146 

184 

106 

104 

78 

102 

115 

100 

5 10-5, CCCP 130 2,500 19 
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TABLE 5 (contd) 

THE EFFECTS OF INHIBITORS ON C O N V ~ S I O N  EFFICIENCY* 

* 
Experimental conditions were as follows: The s t a r t i n g  dens i ty  of 

Se r i e s  I w a s  2.15 m g / m l  (dry weight). 

t h e  increase  i n  dry weight and t h e  gas  uptake. The s t a r t i n g  dens i ty  of 

The 0 /CO r a t i o  w a s  ca lcu la ted  from 2 2  -_-- 

Ser i e s  I1 w a s  approximately 3.3 mg/ml  ( ca l cu la t ed  from t u r b i d i t y ) .  T k  

suspension w a s  sampled a t  spec i f ied  time in t e rva l s ,  t h e  a l iquo t  d i l u t e d  

with f r e s h  medium containing 10 M N a N  

w i t h  medium without a z i d e )  t o  a density of 0.20 mg dry weight/ml (calcu- 

-4 ( t h e  con t ro l  suspension w a s  d i l u t e d  3 

l a t e d  from t u r b i d i t y  readings),  and equ i l ib ra t ed  wi th  a gas phase contain- 

i n g  68% H2, 22% O2 and 10% C02. The 0 /CO quot ien t  w a s  ca lcu la ted  from 2 2  
t h e  d i f fe rence  i n  oxygen uptake with and withoilt iodoacetate ( 5  x 10 -3 M ) .  

The experiments, recorded under Series 111, were ca r r i ed  out i n  Warburg 

f lasks ;  .4 t o  6 mg dry weight ( i n  2 m l )  per  f l a s k .  Carbon dioxide w a s  

administered as bicarbonate ( s p e c i f i c  a c t i v i t y  0.8 pc/pmole). Af te r  a pre- 

incubation of 10 minutes t h e  blcarbonate w a s  added from t h e  s i d e  arm, t h e  

gas uptake recorded, and t h e  reac t ion  terminated by t h e  add i t ion  of acedic  

ac id .  The a c t i v i t y  w a s  measured i n  0 .1  m l  suspension. The a c t i v i t y  of 

suspensions incubated under air or under 0 2 

t h e  a c t i v i t y  observed i n  t h e  presence of H 
2 

as counts f ixed  per volume of gas consumed. 

+ CO mixtures w a s  1% t o  4% of 

and 02. Eff ic iency  w a s  expressed 



-22- 

The th ree  i n h i b i t o r s  cyanide, a z i d e  and carbon monoxide not only 

i n h i b i t  e l ec t ron  t r a n s f e r  v i a  cytochrome 5 t o  oxygen, but  a l s o  r e a c t  with 

o ther  metalloenzymes ( e .  g.  hydrogenase, ca ta lase ,  a ldo la se ) .  

"side" e f f ec t s  a considerable decrease i n  t h e  r a t e  of growth can be expected; 

however, of i n t e r e s t  i s  t h e i r  e f f e c t  on conversion e f f i c i ency .  

Due t o  these  

In TaSle 5 a number of observations of conversion e f f i c i ency  i n  t h e  

presence and i n  t h e  absence of terminal  oxidase i n h i b i t o r s  a r e  l i s t e d .  The 

conversion e f f i c i e n c i e s  are expressed as the  0 /CO 

14  C as the number of counts over t o t a l  gas uptake. 

r a t i o  or, i n  case of 2 2  

Under  normal cord i t ions  of c u l t i v a t i o n  t h e  0 / C O  r a t i o  i s  2.  The 

data i n  Table 5 i nd ica t e  t h a t  t he  r a t i o  i s  not s u b s t a n t i a l l y  changed i n  

the  presence of cyanide, azide o r  carbon monoxide. Consequently, one must 

conclude t h a t  S i t e  I a l s o  s a t i s f i e d  t h e  necessary ATP requirement i n  t h e  

uninhibited system. 

2 2  

CO, a ss imi la t ion  observed i n  the  presence of H and O2 i s  dependent 
< 2 

upon t h e  formation of ATP, which is  generated by oxidat ive phosphorylation. 

14 This i s  evident from the  r e l a t i v e l y  s m a l l  amounts of C assimilated i n  

c e l l s  incubated i n  the  presence of an uncoupler (CCCP) of oxidat ive phos- 

phorylation. The CO a s s imi l a t ion  observed i s  thus a net synthes is  which 

does not depend upon subs t r a t e  l e v e l  phosphorylation. 

Spectrophotometric observations on t h e  behavior of cytochrome b i n  

2 

- 
i n t a c t  ce l l s ,  i l l u s t r a t e d  i n  f i g .  9 gave r e s u l t s  similar t o  those with 

ce l l - f r ee  e x t r a c t s  ( s e e  f i g .  8 ) .  

absorption due t o  cytochrome - c ( f i g .  9, curve 2) i s  observed, while cyto-  

chrome - b i s  completely oxidized. The observations support t h e  conclusion 

t h a t  an ac t ive  cytochrome b-oxidase is  operat ive i n  t h e  i n t a c t  c e l l s .  

I n  t h e  presence of a i r  and CN- only 

- 
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3. Effect  of Oxygen on Cytochromes. 

I n  most aerobic c e l l s ,  e lec t rons  released from t h e  subs t r a t e  are 

s e r i a l l y  t r ans fe r r ed  v i a  cytochrome 2, cytochrome - c and cytochrome - c - 
oxidase t o  oxygen. Spec t ra l  observations have shown t h e  presence of cyto- 

chrome - b and cytochrome - c i n  in t ac t  c e l l s  and i n  c e l l - f r e e  preparat ions,  but 

have f a i l e d  thus  far t o  e s t a b l i s h  the presence of cytochrome - e-oxidase i n  

- H. eutropha and - -  H-20. A s  described i n  the  previous sect ion,  t he re  i s  good 

evidence t h a t  cytochrome b - can funct ion as terminal  oxidase i n  t h e  presence 

Of CO, CN- and N- s ince  it is  an autooxidizable component which presumably 3 
does not combine with these  inh ib i to r s .  The main unsolved questions a re :  

a )  The ef fec t iveness  o f  cytochrome b as te rmina l  oxidase i n  

normal conditions of growth ( i . e .  i n  t h e  absence of i n h i b i t o r s ) .  

The mechanism by which the C-type cytochrome i s  reduced and 

oxidized. 

- 

b )  

A de t a i l ed  study of these  aspects  of e l ec t ron  t r anspor t  i n  hydrogenomonads 

i s  underway; some preliminary r e s u l t s  of t h e  e f f e c t  of oxygen/hydrogen 

mixtures on t h e  redox s t a t e  of cytochrome b and cytochrome c w i l l  be 

b r i e f l y  discussed. 

- - 

Spect ra l  observations were made with a dual-beam spectrophotometer. 

The c e l l  suspension, contained i n  a ( 3  m l )  thermostated cuvette,  could be 

equ i l ib ra t ed  with oxygen/hydrogen mixtures of known composition and simul- 

taneously,  t h e  s teady-state  absorption c h a r a c t e r i s t i c s  of t h e  cytochromes 

recorded. A reference wavelength of 650 mp w a s  used t o  measure 

t h e  response of cytochrome - b (absorpt ion m a x i m u m  560 mp) and of cytochrome c 
(absorp t ion  m a x i m u m  of 552 mp). Since t h e  t o t a l  absorpt ion due t o  cytochrorne c - 
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i s  approximately twice t h a t  Of cytochrome 2, changes a t  t h e  cytochrome - c 

l e v e l  were measured at 548 t o  549 mp. I n  t h i s  fash ion  equal absorpt ion of 

both cytochromes is  obtained. 

I n  f i g .  10 the  redox s t a t e s  of cytochrome (closed symbols) and 

cytochrome c (open symbols) as a func t ion  of 0 /H 

Complete reduct ion of t h e  cytochromes is  assumed i f  t h e  suspension i s  

flushed w i t h  hydrogen. 

mixtures a r e  i l l u s t r a t e d .  
2 2  - 

This i s  indeed so i n  case of cytochrome - c.  The 

absorption difference between t h e  hydrogen reduced and a i r  oxidized sus- 

pension (H,-0 

d i th ion i t e  reduced and fe r r icyanide  oxidized suspensions (D-F d i f f e rence ) .  

d i f fe rence)  usua l ly  equaled t h e  d i f fe rence  obtained wi th  
r 2  

However, complete r educ t ion  of cytochrome - b w a s  never observed i n  t h e  

presence of hydrogen. 

absorption increased with decreasirig temperatures.  

difference w a s  approximately 75% t o  90% of t h e  (D-F) d i f fe rence ,  while at 

1 C hydrogen w a s  capable of reducing only some 60% of cytochrome b. - This 

The discrepancy between t h e  (D-F) and ( H  -0 ) 2 2  

A t  30°C, t h e  ( H2-02) 

0 

temperature response of cytochrome - b corroborates t h e  oxidat ion k i n e t i c s  

i l l u s t r a t e d  i n  f i g .  10. Apparently, t h e  t r a c e  amounts of oxygen present  

i n  hydrogen a r e  s u f f i c i e n t  t o  p a r t i a l l y  oxidize cytochrome - b. 

Equi l ibra t ion  with increasing amounts of oxygen ( up t o  approximately 

5% i n  H2) r e s u l t s  i n  f u r t h e r  oxidat ion of cytochrome b.  - 

containing 5% t o  25% oxygen, t h e  redox state of cytochrome - b i s  l i t t l e  

a f fec ted .  Apparently, a t  these  0 /H r a t i o s ,  reduct ion and oxidat ion are 2 2  

i n  balance. 

With mixture 
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L i t t l e  change i n  t h e  redox state of cytochrome - c is  observed with 

If 02/H2 mixtures containing up t o  5% O2 ( s e e  f i g .  10, open symbols). 

t h e  proportion of 0 i n  t h e  mixtures i s  f l i r ther  increased, a gradual 

ox ida t ion  of cytochrome - c i s  observed. 

2 

Complete oxidation of cytochrome 

c usua l ly  occurs at lower 0 /H r a t i o s  than  does cytochrome - b .  
2 2  - 

The observations of t h e  redox s t a t e  of cytochrome c as a func t ion  of - 
02/H2 concentrat ions i s  provis iona l ly  in t e rp re t ed  on t h e  b a s i s  of t h e  

assumption t h a t  oxidation of cytochrome - c i s  mediated by a r e l a t i v e l y  

"poor" oxidase. This would account f o r  t h e  rap id  oxidation of cytochrome c - 
wi th  mixtures containing 15% t o  25% 02. 

A t  low oxygen concentrations (up  t o  5% i n  H2), cytochrome c i s  - 
v i r t u a l l y  i n  a reduced s t a t e ,  and thus i s  an i n e f f i c i e n t  e l e c t r o n  acceptor.  

Presumably, under these  conditions cytochrome b-oxidase i s  predominant, - 

and t h e  e l e c t r o n  t r anspor t  t o  oxygen occurs (a t  a reduced r a t e )  v i a  t h i s  

pathway. 

It i s  not c l e a r  whether a t  the higher oxygen concentrations f e r ro -  

cytochrome b i s  a l s o  oxidized by ferri-cytochrome c. However, some - - 

i n s i g h t  t o  t h e  sequence of reduction and oxidation of t h e  two cytochromes 

w a s  gained, suggesting t h a t  under c e r t a i n  conditions such a t r a n s f e r  i s  

poss ib le .  The curves of f i g .  11, obtained b j  measuring t h e  t r a n s i t i o n  from 

oxidized t o  t h e  reduced state, show t h a t  upon t h e  in t roduct ion  of hydrogen 

i n t o  a i r - equ i l ib ra t ed  suspension, cytochrome b i s  i n i t i a l l y  reduced more 

r ap id ly  than cytochrome c, although a s teady-s ta te  i s  subsequently 

- 

es tab l i shed .  A rapid t r a n s i t i o n  then  occurs, i nd ica t ing  t h a t  cytochrome c - 
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i s  being reduced f u r t h e r  than  cytochrome - b .  

oxygen with hydrogen, cytochrome - b becomes gradual ly  reduced. 

Upon f u r t h e r  s u b s t i t u t i o n  of 

Introduction of a i r  ( f i g .  11, s o l i d  l i n e )  i n  t h e  hydrogen-reduced 

sample r e s u l t s  i n  a r e l a t i v e l y  fast oxida t ion  of cytochrome 2, and a 

r e l a t i v e l y  s lov  oxidation of cytochrome - c as indica ted  by an absorption 

change i n  t h e  d i r e c t i o n  of (reduced) cytochrome - e .  

(2 and - c oxidize at t h e  same r a t e )  cytochrome - c becomes completely oxidized. 

If the  oxidation i s  ca r r i ed  out at a lower temperature ( f i g .  11, dashed 

curve) an "overshoot" i n  t h e  d i r e c t i o n  of reduced cytochrome b - i s  observed. 

This ind ica tes  t h a t  complete oxida t ion  of cytochrome b occurs after complete 

oxidation o f  cytochrome e .  

After a s teady-s ta te  

- 

- 

The r e s u l t s  i l l u s t r a t e d  here give only an ind ica t ion  with respec t  t o  

the  sequence of reduction and oxidation, but do not represent q u a n t i t a t i v e l y  

t h e  redox s t a t e  of  t he  cytochromes. The oxidation k i n e t i c s ,  however, a r e  

i n  complete agreement wi th  t h e  r e s u l t s  i l l u s t r a t e d  i n  f i g .  10. 

D 3 ; t a  presented ind ica t e  t h a t  t h e  oxida t ive  energy-generat ing  system of  

hydrogenomonads can, under c e r t a i n  conditions,  u t i l i z e  an  abbreviated 

e lec t ron  t r anspor t  chain, t e rmina t ing  a t  cytochrome - b. Evidence supporting 

t h i s  view was obtained from ATP formation and e f f i c i ency  of CO f i x a t i o n  

i n  t h e  presence and i n  t h e  absence of c e r t a i n  i n h i b i t o r s ,  as well as from 

observations concerning t h e  redox s t a t e s  of cytochrome b and c as a func t ion  

of oxygen concentration. Possibly t h e  b e s t  i n t e r p r e t a t i o n  of t hese  d a t a  is  

t h a t  at r e l a t i v e l y  low oxygen concentrations, t h e  usua l  growth conditions of 

t he  ce l l s ,  t h e  abbreviated chain provides t h e  bulk of energy for syn thes i s .  

2 

- - 
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But t h i s  assumption does not provide a so lu t ion  for t he  puzzling behavior 

of cytochrome - e .  

NAD - cytochrome - c - reductase, a pathway a l s o  known t o  be present i n  

hydrogen~monads(~'), t hen  one could conclude t h a t  t h e  oxida t ion  of cyto- 

chrome - c r e s u l t s  i n  expenditure of NADH. Because conversion e f f i c i e n c i e s  

are cons i s t en t ly  lower a t  r e l a t i v e l y  high oxygen concentrations ( see  

Table 3 ) ,  t h i s  patbway must be defined as uneconomical f o r  t h e  c e l l .  

If one assumes t h a t  cytochrome - c i s  mainly reduced by 

A t e n t a t i v e  e l ec t ron  t ranspor t  system which i n  pa r t  accounts f o r  t h e  

above i s  i l l u s t r a t e d  i n  f i g .  12.  This scheme includes "X", a primary, 

ye t  un ident i f ied  acceptor, presumably having a redox p o t e n t i a l  of t h e  

o rde r  of fe r r idoxin ,  and an unident i f ied  quinone "Q" (18). NAD i s  not 

included i n  t h e  abbreviated e lec t ron  t r anspor t  sequence f o r  reasons 

discussed e a r l i e r  (I8). 

of .NADH i s  t o  provide t h e  c e l l  w i t h  reducing equivalent f o r  CO 

r a t h e r  than t o  provide energy v i a  oxidative phosphorylation. The scheme i s  

a t e n t a t i v e  one, because determinations of t h e  turn-over r a t e s  of cytochrome 

- b and cytochrome - c oxidase and cha rac t e r i za t ion  of t h e  oxidases w i l l  be 

necessary t o  define t h e i r  cont r ibu t ion  i n  e l e c t r o n  t r a n s p o r t .  

Briefly,  it i s  considered t h a t  t h e  main func t ion  

reduction, 2 
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V. TURN-OVER CHARACTERISTICS ----- 

Long-term performance of a continuous ( p i l o t - s i z e )  cu l tu re  of b a c t e r i a  

(Aerobacter cloacae) w a s  most informatively character ized by Herbert and 

co-workers(6) i n  the  statement ; "The longest ind iv idua l  run l a s t e d  108 

days and w a s  s t i l l  f r e e  from contamination when terminated voluntar i ly" .  

Their  r e s u l t s  ind ica te  t h a t ,  (1) r e l i a b l e  continuous operat ion can be 

achieved, provided proper a sep t i c  techniques are employed, ( 2)  no de tec tab le  

mutations developed (genet ic  s t a b i l i t y )  and (3)  constant metabolic a c t i v i t y  

can be obtained (physiological  s t a b i l i t y ) .  

The s m e  l e v e l  of soph i s t i ca t ion  has ye t  t o  be reached with continuous 

cul tures  of hydrogen bac te r i a .  Our longest continuous run t o  da te  has been 

34 days, t he  f i r s t  25 days of which a r e  summarized i n  f i g .  13. A malfunction 

i n  the  H -pressure regula tor  forced a shut-down on t h e  26th day, recovery 

of t h e  suspension w a s  incomplete and t h e  cu l tu re  w a s  subsequently discontinued 

on the  34th day. 

2 

The object ive of the  experiment t o  be described w a s  t o  e s t a b l i s h  the  

re la t ionship  of t he  combined e f f e c t s  of t h e  c e l l  population dens i ty  and t h e  

composition of the  input medium upon t h e  production r a t e .  The cu l tu re  w a s  

s t a r t e d  by heavy innoculation a t  t h e  indicated dens i ty  ( s e e  f i g .  13, s o l i d  

curve) and maintained at t h i s  l e v e l  f o r  5 days. During t h i s  i n t e r v a l  c e l l  

concentration w a s  r e l a t i v e l y  constant;  va r i a t ions  were l e s s  t han  4$. Cel l  

production (average s p e c i f i c  r a t e s ,  see f i g .  13, dashed curve) var ied  

considerably (10% t o  20%). 
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The population w a s  allowed t o  increase  (e .g .  on t h e  5 th  day) i n  small 

increments (of approximately nne OD) by i n a c t i v a t i n g  t h e  dens i ty  cont ro l .  

Af te r  t h e  s m a l l  increment w a s  a t ta ined ,  t h e  cu l tu re  w a s  operated automatical ly  

f o r  approximately ha l f  an hour. During t h i s  i n t e rva l ,  c e l l  concentrat ion 

w a s  maintained constant by the  add i t ion  of t h e  more concentrated medium 

( f o r  composition see Table 6). 

t h e  desired population dens i ty  w a s  achieved. 

The incremental  s t eps  were repeated u n t i l  

The s p e c i f i c  output r a t e  w a s  f a i r l y  constant during the  f irst  nine 

days. 

presumably caused by malfunctioning oxygen sensor.  However, a f te r  adjustment 

of t h e  sensor recovery w a s  incomplete, u n t i l  t he  t r a c e  element concentrat ion 

w a s  t r i p l e d  on the  15th day. No d i r e c t  r e l a t i o n s h i p  between cause and cure 

i s  evident, however. Supplementation with t r a c e  elements w a s  accompanied by 

a voluntary increase i n  population dens i ty .  Good production w a s  subsequently 

obtained ind ica t ing  t h a t  a l l  nu t r i en t  demands were s a t i s f i e d .  On f u r t h e r  

increasing the  dens i ty  (19th  day) t h e  harvest  output declined sharply.  

dec l ine  i n  production w a s  probably due t o  l ack  of CO 

but  other n u t r i t i o n a l  de f i c i enc ie s  may have a l s o  contr ibuted.  The operat ion 

a t  these r e l a t i v e l y  high d e n s i t i e s  i s  cu r ren t ly  being inves t iga ted .  

Then (10th  t o  15th day) a s ign i f i can t  decrease w a s  observed, 

This 

( s e e  sec t ion  11, 2 ) ,  2 

Phosphate and ni t rogen concentrations i n  t h e  suspending medium were 

determined da i ly .  

proved adequate. The phosphate concentrat ion of t h e  suspending medium 

sta’oilized a t  a s l i g h t l y  lower l e v e l  (.029 t o  .O27), depending on populat ion 

densi ty .  

The phosphate concentration (.03M) of t h e  input medium 
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During t h e  f irst  17 days of operation, t h e  n i t rogen  concentration i n  

t h e  suspending medium w a s  balanced a t  - .3O grams per  l i t e r :  t h e  expected 

leve l  f o r  t h e  coIribiriittioii of c e l l  population arid n i t rogen  input  employed. 

The r e s u l t s  s a t i s f y  t h e  mass balance r e l a t ionsh ip  (see 111, 3).  

spec i f i c  rate of c e l l  production observed during t h e  last  5 days of operat ion 

i s  accompanied by an  increase i n  the  l e v e l  of suspension nitrogen; one would 

expect t h a t  t h i s  increase  i s  caused by decomposition of ce l l s .  

The low 

Nitrogen w a s  supplied as a urea-ammonia mixture (see Table 6); it w a s  

found e a r l i e r  t h a t  t h e  suspension-pH could thus  be  maintained by r e l a t i v e l y  

low phosphate buf fer  concentration. While t h e  feed medium contained twice 

as much a r e a  as ammonia, l i t t l e  o r  no urea  w a s  detected i n  the suspending 

medium. 

obviously not operat ive under t h e  conditions employed ( e .  f .  f i g .  6 ) .  

Since a l l  urea  i s  r a p i d l y  decomposed, urease cont ro l  by ammonia i s  

The bes t  s p e c i f i c  output rates ( f i g .  13, 15th  t o  19th  day) were of t h e  

-1 
order  of .80 grams (D.W.) ind ica t ing  a K-value of .16 t o  .20 ( h r  

t h i s  ra te  i s  expressed as volume of CO 

suspension, t he  hourly spec i f i c  r a t e  i s  150 ml . A value of t h e  same order  

i s  observed a t  t h e  r e l a t i v e l y  l o w  c e l l  dens i t i e s  (0  t o  10 days, f i g .  13). 

Presumably such r a t e s  can be maintained at s t i l l  higher  c e l l  concentrat ions 

(8 t o  10 grams), but  it i s  not expected t h a t  a s u b s t a n t i a l  increase i n  t h e  

s p e c i f i c  r a t e  can be r ea l i zed .  

).  If 

converted per  gram (D.W.)  of working 2 
* 

The ear l ier  ca lcu la t ions  (”‘) i nd ica t ing  

-__-_-- * 
Values of t h e  same order  of magnitude obtained wi th  ba tch  cu l tu re s  were 

reported e a r l i e r  (L2) 
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t h a t  a suspension volume of some 20 l i t e r s  would provide s u f f i c i e n t  re- 

generative capacity for t h e  carbon dioxide output (- 22 l i t e rs )  of one man 

seem t o  be borne out by t h e  r e s u l t s  described here .  

No attempts were made t o  reso lve  simultaneously t h e  e f f i c i e n c y  of energy 

conversion i n  continuous cu l tu re s .  However, t h e  measured s p e c i f i c  rates 

warrant t h e  expectat ion t h a t  energy u t i l i z a t i o n ,  which i s  f a i r l y  constant 

under average conditions,  w i l l  not g r e a t l y  exceed t h e  values s t a t e d  i n  

f i g .  1. 



VI. FIGURES 



Figure 1 - Flow diagram of a l i f e  support system based on t h e  coupling 

e l e c t r o l y s i s  of w a t e r  and biosynthesis  by hydrogen bac te r i a .  



n 
c 

0 

I 

v, 
W 
I- 
v, a 
3 

7- 

9- 
v, 
c 

v,x < ON 

c3 z 
v, 
v, 
W 

- 

n o  
0 0  
orr 
k h  

ON 
I 
+ 
0 
0 

N 

T 
N 

0 
+ 
ON 
I 
0 

.. 
h 
v, 
W 
E 

z 
2 
3 
I 

ON 
I 
v\ 

+ 
ON 
I 
0 

T N 

0 
0 
+ 
0 
N 

N 

+ 
I 
\o 

N 

.. 
v, 
v, 
W 

- 
E z > 
v, 
0 
m 
- 

v, SI- 
C 

W 

N <  
0 0 

(-0 

+ E Z  
N 

I dE5 
\o 

T *  
ON 
I 
\o 



Figure 2 - Continuous cu l ture  apparatus, t u r b i d i t y  control led.  
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Figure 3 - p H  chamber ( l u c i t e ) ,  actual  s ize .  
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Figure 4 - Density cont ro l  (sample) chamber, ac tua l  size. 



Tef Ion 
Gasket 

REX 
CL607 

indow 

mm 
mm 

mm 

'indow 



Figure 4A - Density control  c i r c u i t r y  
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13 Figure 6 - Effect  of ammonia on urease a c t i v i t y  of H-16 ( K b i g  ) .  
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Fjgure 7 - Rate of CO consumption ( t o p )  and formation of i n t r a c e l l u l a r  2 

( l i p i d )  inc lus ion  as a func t ion  of oxygen concentration a t  

constant H and CO supply. 2 2 
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Figure 5 - OD/DW Relationship.  Inse t :  OD/DW r a t i o  at constant dens i ty .  
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Figure 8 - Oxidation of reduced cytochrome - b by oxygen. Sample (Thunberg) 

cuvette containing 2 m l  ex t r ac t  (10mg p ro te in  per  m l )  w a s  

gassed with hydrogen, reference cuvette with air .  A f t e r  an 

incubation of 5 minutes at room temperature, spectrum 1 w a s  

obtained. Subsequently, cyanide w a s  added from t h e  side-arm 

( f i n a l  conc. 10 M),  t h e  hydrogen i n  t h e  sample cuvette 

replaced by air  and spectrum 2 w a s  obtained. 

-4 were obtained with 10 

cuvette.  Spectrum 3 w a s  measured after f lush ing  t h e  sample 

with hydrogen and t h e  reference with a i r .  

obtained subsequently after f lush ing  t h e  sample cuvette with air .  

Measurements were made at room temperature i n  Cary model 15. 

-4 

Spectra 3 and 4 

M CN- i n  both reference and sample 

Spectrum 4 w a s  
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Figure 9 - Absorption spectrum of i n t a c t  _H-20. - 

Curve 1: Sample hydrogen reduced and reference a i r  oxidized; absorpt ion 

maxima 552 mp, (cytochrome - c )  and 560 mp, (cytochrome - b ) .  

Sample oxidized i n  air  i n  t h e  presence of CN-, reference i n  a i r  

i n  t h e  absence of CN-. 

Curve 2: 
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Figure 10 - Redox state of cytochrome 3 and cytochrome - c as a funct ion 

of oxygen (hydrogen as balance).  

reduced by hydrogen w a s  subsequently flushed with oxygen/hydrogen 

mixtures of known composition, and redox s t a t e  of cytochrome - b 

and - c ( s teady-s ta te  values) p lo t t ed  as a funct ion of oxygen. 

Measurements were made sequent ia l ly  i n  a dual  beam spectro-  

photometer; reference wavelength 650 mp. 

The suspension ( i n t a c t  c e l l s )  
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Figure 11 - Trans i t ion  changes of cytochrome 2 and of cytochrome - c i n  

a suspension of Hydrogenomonas SJ. Suspension i s  reduced 

by f lushing with hydrogen, and oxidized by f lushing t h e  sample 

with a i r .  A wavelength of approximately 548 mp (cytochrome c, 
pos i t ive  def lec t ion)  w a s  used as sample beam, and a wavelength 

of approximately 562 mp (cytochrome > absorption, negative 

def lec t ion)  as reference beam. 

lengths w a s  such t h a t  t h e  absorpt ion due t o  cytochrome - c w a s  

balanced (zero  def lec t ion)  by t h e  absorption of cytochrome b, 

both i n  oxidized ( A )  and reduced states (B)  . 

The se l ec t ion  of t h e  two wave- 
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Figure 12 - Tentat ive e l ec t ron  t ranspor t  scheme of Hydrogenomonas 9. 

( see  t e x t ) .  
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Figure 13 - Production rate of - -  H-20 i n  a t u r b i d o s t a t i c a l l y  cont ro l led  

continuous cu l ture .  For condi t ions see Table 6. 
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